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Abstract 

On the world-volume of an M-theory five-brane propagates a two-form with self-dual field 
strength. As this field is non-Lagrangian, there is no obvious framework for determining its partition 
function. An analogous problem exists in Type liB superstring theory for the self-dual five-form. 
The resolution of these problems and definition of the partition function is explained. A more 
complete analysis of perturbative anomaly cancellation for M-theory five-branes is also presented, 
uncovering some surprising details. 
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1. Introduction 

M-theory is the conjectural quantum theory that under certain conditions looks at long- 

wavelengths like 11-dimensional supergravity [ 1 ] and reduces to various string theories in 

other limits. An important aspect of  this theory is that the low energy description in ! 1 

dimensions can be enriched with the addition of  certain extended objects, namely mem- 

branes or two-branes [2] and five-branes. The five-brane, originally found as a solution 

of the low energy classical equations [3], is an extended object whose world-volume is a 

five-dimensional object that sweeps out a six-manifold in space-time. 
In a recent paper [4], it was shown that the low energy effective action of  M-theory 

on a closed 11-dimensional spin manifold Q is well-defined. To be more precise, let IM 
be the Chern-Simons interaction of  the long-wavelength limit of  M-theory; schematically 

1M = C G G  + CI8(R) ,  where C is the massless three-form, G the gauge-invariant field 
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strength of  C, and Is(R) is a certain eight-form constructed from the Riemann tensor (first 

obtained in [5,6]). Let det DRs be the path integral of  the Rarita-Schwinger field; 2 it is 

real but not necessarily positive. The long-wavelength limit of  the quantum measure of 

M-theory 3 is a product of  manifestly well-defined factors times 

det DRS e ilM (1.1) 

and it was shown in [4] that this product is well-defined (though neither factor is well- 

defined separately). The main novelty required for this result was a gravitational shift in the 

quantization law of  G. The shifted quantization law says that 

= ~ + integral cohomology class, (1.2) 

where [G/2~r] is the cohomology class of  G/2rr, and ~. = Pl (32)/2 ()~ is integral for a 

spin-manifold Q)[7,8]. One would like to know whether the long-wavelength effective ac- 

tion is still well-defined in the presence of  impurities. As partly anticipated above, there 

are three known kinds of  impurities: boundaries of  Q (where E8 supermultiplets are be- 

lieved to propagate); two-branes; and five-branes. Anomaly cancellation in the presence 

of  boundaries has been demonstrated in [7,8]. 4 Membrane world-volume anomalies are 

rather simple because the world-volume theory is non-chiral. The only issues concern the 

sign of  the path integral of  the world-volume fermions and the flux quantization law for G. 

There is potentially an anomaly affecting the sign of  the fermion determinant, and it was 

shown in [4] that the L/2 term in (1.2) gives an additional effect that cancels this anomaly 

[ 10-12]. The remaining case, 5 the five-brahe, is the principal subject of  the present paper. 

This case is particularly subtle because the five-brane world-volume theory is chiral. There 

are therefore potential perturbative anomalies, which have been partially analyzed in [6,10[ 

and are considered more fully in Sections 3 and 5 below. One should also consider global 

anomalies, which can perhaps be treated by an extension of  the methods in [9]. 

But a question more basic than those will be our main interest here: What is the five- 
brane partition function ? This must be answered before the question of  whether this partition 

function has anomalies can be formulated. The reason that there is a problem is simple. 

One of  the fields on the five-brane world-volume is a self-dual three-form T; that is, on 

the world-volume there is a two-form, say ¢~, which is constrained so that its field-strength 

T is self-dual. (This result was first obtained in the Type IIA context [131.) Such a field, 

which we will call a chiral two-form, has no Lagrangian formulation, and there is subtlety 
in defining, even formally, what its partition function should be. 

A chiral two-form in six dimensions poses a rather similar problem to a chiral boson 4~ 
in two dimensions (whose field strength is a self-dual one-form 04~). In fact, if the world- 

2 As in the case of any Majorana fermi field, this path integral might be more naturally called a Pfaffian 
rather than a determinant. 

3 By the quantum measure I mean the exponential of the effective action. 
4 To be more precise, perturbative anomaly cancelation was analyzed in those papers; it would be natural 

to analyze the global anomalies by an extension of ideas in [9]. 
5 Still more generally, but beyond our scope here, one could consider membranes ending on boundaries [7] 

or five-branes [11,12]. 
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volume W of the five-brane is of  the form W = ~ × CP 2, 6 with Z' a Riemann surface, then 

in the limit that E is much larger than the CP 2, the theory of  the chiral boson on W reduces 

to the theory of  one chiral boson on Z'. For one chiral boson, there is no modular-invariant 

partition function - a modular-invariant partition function for chiral bosons requires an 

even self-dual lattice [14], and in particular the net number of chiral bosons must be a 

multiple of 8. So this particular example shows that it is impossible to define for the chiral 

two-form a partition function that is "modular-invariant," that is, invariant under arbitrary 

diffeomorphisms of W. 

We are not, however, dealing in M-theory with a bare six-manifold W. W is embedded 

in an 11-dimensional spin-manifold Q, on which there are fields obeying certain relations 

such as (1.2) and [11] d T =  G. In Sections 2 and 3, we demonstrate that this additional 

data are exactly right to make it possible to define a partition function for the chiral two- 

form, which is invariant (up to an ordinary anomaly) not under all diffeomorphisms of  W, 

but under those that preserve the physical data. (By "an ordinary anomaly", we mean an 

anomaly that only affects the phase of  the partition function, and so can cancel anomalies 

coming from other interactions or fields.) 

In Section 4, we make a digression from five-branes, and show that a similar problem 

arises, and can be treated similarly, for the chiral four-form of Type IIB superstrings - that 

is, the massless field whose field strength is a self-dual five-form. This problem was avoided 

in a previous analysis of Type IIB global anomalies [9] by considering only 10-manifolds 

of  vanishing fifth Betti number; for such space-times the problem does not arise, as will be 

apparent. 
Finally, in Section 5, we look at the ordinary anomalies. To be more precise, we give a 

more complete analysis of  five-brane perturbative anomalies than has been done hitherto. 

The analysis proves to require some surprising novelty, and we actually get a complete 

answer only in the Type IIA case, not in M-theory. 

My interest in these issues came originally from thinking about non-perturbative super- 
potentials generated by five-brane instantons [ 15]. Such an instanton contribution is roughly 

e -~' P,  where @ is a chiral superfield whose real part is the volume of the instanton and P 

comes from quantum fluctuations. Roughly speaking, zeros of  P determine the supersym- 

metric vacua. In [ 15], the zeros coming from fermion zero modes were analyzed. Additional 

zeroes can come from the behavior of the partition function of the chiral two-form. To de- 

termine the locations of the zeros requires the considerations of the present paper. 

2. Review of chiral scalars in two dimensions 

2.1. Basic framework 

In this section, we review some aspects of  the theory of  a chiral scalar in two dimensions, 

and explain how some of  the ideas generalize above two dimensions. 

6 This particular W is not a spin manifold, but it could be embedded in an 11-dimensional spin manifold 
Q, and so can arise in M-theory. 
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Since there is no effective Lagrangian formulation for a chiral scalar, there is no natural 

way to use path integrals to determine the partition function. One approach is to take a 

non-chiral boson, which does have a Lagrangian and a well-defined partition function Z, 

and try to write Z as the absolute value squared of  the chiral boson partition function. As 

is well known, things do not work so simply. Z is not the square of  a holomorphic function 

but a sum of such squares; the number of  terms depends on the periodicity or radius of  the 

non-chiral boson. 

As will become clear, the radius of  relevance to our problem is the free-fermion radius. 

This corresponds to momenta which take values in the unimodular, but not even, one- 

dimensional lattice 77, endowed with the quadratic form f ( x )  = x 2 (that is, the unit element 

in Z is of  length one). At the free-fermion radius, the partition function of  the free boson 
7 on a Riemann surface i7 of  genus g can be written as 

= Z 10~12" (2.1) Z 
R 

Here ot runs over the spin structures on ~ ,  and OR is the free-fermion partition function 

with spin structure or. In genus one, OR = 0R/r/where 0R is a theta function and 0 is the 

Dedekind eta function. The functions OR are the candidate partition functions of  the chiral 

boson. Our problem is to understand - in a form suitable for generalization to five-branes 

or to Type l ib  in 10 dimensions - the fact that a choice of  spin structure enables one to pick 

out a particular one of  the @R's. 

It is natural to couple the chiral boson to a background gauge field A, which we can 

think of  as a connection on a line bundle 7". The field strength is then A = d¢~ + A, and 

A is no longer closed; it obeys dA = F with F the field strength of  A. The existence of  

a gauge-invariant field A with dA = F means that (unless we make operator insertions 

that modify that equation) Cl (7") must vanish, so 7" is topologically trivial. Each choice of  

connection A gives (via the 3 operator) a complex structure to 7". The moduli space of  such 

complex structures is the Jacobian J z  of  E .  One can identify J z  as H 1 (I2, R ) / H  1 (~,, ~_). 

The coupling to a background gauge field has an analog in the five-brahe problem. 

The relevant background field here is the three-form C of  11-dimensional supergravity 

(restricted to the five-brahe world-volume W). The field strength of  C is G = dC. The 

self-dual three-form T on W obeys [11] d T =  G, and this equation is obviously quite 

analogous to dA = F.  The coupling to C plays for the self-dual three-form a role quite 

similar to the coupling to a background gauge field for the self-dual one-form. For reasons 

that will be explained, we will be able to think of  C as defining a point in the "intermediate 
Jacobian" H3(W, R) / H3(W, ~). 

The equation dT = G means that the restriction of  G to the five-brane world-volume W 
must be zero cohomologically (just as above the relation dA = F implied that 7" is trivial 
topologically). It follows, therefore, given (1.2), that the restriction of  X to W is even. This 
will be important in Section 3. 

7 A thorough and direct study of this is in [16]. Note that this problem is much simpler than the generic 
case of rational conformal field theory in that the space of conformal blocks has a distinguished basis, given 
by the 69,,. 
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2.2. Embedding in non-chiral theory 

107 

We will look now more closely at the embedding of  the chiral scalar in the theory of  a non- 

chiral scalar. In doing so, we work on a two-dimensional surface 27 of  Euclidean signature, 

so the Lagrangian will be complex, and the self-duality condition reads d~b = i • dq~. 

We consider thus a scalar field ~b, with a periodicity 4) ~ ~b + 2zr, and a Lagrangian (at 
the free-fermion radius) 

' /  L = 8-~ d2x*v~giJoi~OJq~" (2.2) 

We introduce as explained above a U(1) gauge field A with gauge transformation law 

SAi = -Oia,  3¢~ = a, and Lagrangian 8 

if if L = 8--~ d2xv~giJ(oid~ + Ai)(Ojd~ + Aj)  + - ~  d~eiJoiAj. (2.3) 

r ~ 

(The transformation law of  4, means that 4~ is a section of  the circle bundle on which A is a 

connection, which therefore must be topologically trivial as explained earlier in a somewhat 

different way.) The point of this particular coupling is that A has been coupled only to the 

chiral part of 4~. This can be made clear by introducing local complex coordinates z, g (with 

orientations so that ez7 = -eTz = i) and expanding the Lagrangian to get 

' /  L = 4-~ I dz m dgl(0z~b0-/z~0 + 20z~A- ~ + AzA-~). (2.4) 

Thus, only A~- and not A z couples to the quantum field 4~. It follows that in a suitable sense 
the partition function 

Z(A)  = f do e -L  (2.5) 

depends holomorphically on A~. 

To be more precise, introduce a complex structure on the space of  gauge fields in which 

A2 is holomorphic and A z is antiholomorphic. A holomorphic line bundle ZZ over the space 

of  gauge fields can be defined by taking/2 to be the trivial line bundle endowed with the 

covariant derivatives 

D 8 I ~ A j "  
- -  + ( 2 . 6 )  m 

DAi ~Ai 

This means that 

D 

DAz ~Az 

A- i 

4zr 
(2.7) 

8 A more complete account of the point of view that follows, in the more general context of the WZW 
model, is in [17]. 
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To show that this connection defines a holomorphic structure on Z;, one must check from 
(2.6) that 

D x ) '  D x')  = 0. (2.8) 

This is straightforward. Then using the fact that A z appears in L only in the AzA- i term in 

(2.4), together with the explicit form of  (2.7), one finds that (D/DA z)e-L = 0. The partition 

function Z = f d4~ e -L therefore obeys the same equation: 

D 
- -  Z = 0 .  ( 2 . 9 )  
DAz 

Thus, the partition function is a holomorphic section of£, over the space of  all connections. 
The fact that the partition function is most naturally seen as a section of  a line bundle 

rather than a function is related to the fact that the Lagrangian (2.3) is not gauge-invariant. 
Under gauge transformations 8dp = a, 8A = - da, one has 

' /  ~L = - ~  a EiJOiAj. (2.10) 

E 

The partition function thus obeys not standard gange-invariance, which would read 

8 
Oi Z = O, (2.11) 

8Ai 

but rather 

( ° 
a i ~  4zr ] Z = 0 "  (2.12) 

This means that the partition function Z is invariant under infinitesimal gauge transforma- 

tions if interpreted as a section of  12 rather than as a function. The operators on the left-hand 

side of  (2.12) are the ones that generate infinitesimal gauge transformations when acting 

on sections of  12. This is a special case of  a more general assertion about the WZW model; 
see [17], Eq. (2.17). 

So far we have coupled to arbitrary (topologically trivial) background gauge fields A. 

The partition function is constrained by the two conditions of  gauge covariance (2.12) 

and holomorphy (2.9). Taken together, the two conditions determine how the partition 
function transforms under a complex gauge transformation 8A-f = --OE, 8Az = - 8 g .  By a 

complex gauge transformation one can reduce to F = 0. So there is no loss of  generality 
in considering only the coupling to background fields with F = 0. 

The gauge field A, modulo infinitesimal gauge transformations and with F = 0, defines a 
point in H 1 ( ,~,  R) .  With infinitesimal gauge transformations acting as in (2.12), 12 descends 
to a line bundle - which we will also call £ - on HI ( ,u ,  R). Z, being gauge invariant in 

the sense of  (2.12), descends to a section of  £ over H 1 ( ,~,  ~ ) .  However, we want to divide 
by the "big gauge transformations", and interpret Z as a section of  a line bundle over 
H 1 (2?, R) /H  1 (,~V', 7/), which is the Jacobian Jz: of  2?. 
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There is no natural choice of  how the "big gauge transformations" should act on E. Why 

this is so is explained below. There are in fact different and equally natural line bundles E~, 

obtained by differing choices of  how the big gauge transformations act on £.  

Related to this, the partition function Z considered so far is not really the object we want. 

It includes the contributions of  the "wrong chirality" part o f ~  which though decoupled from 

A is still present in the partition function. If one tries to carry out holomorphic factorization 

to suppress the wrong chirality field, one finds as in (2.1) that Z is a sum of terms, each 

involving (as will become clear) a different E~. 

What has been said so far applies to a chiral 2k-form fl in 4k + 2 dimensions for any 

k. The arguments have been presented in such a way that they carry over without any 

essential change. We repeat the story briefly. Letting C be a background 2k + 1-form on a 

4k +2-dimensional  manifold W, and G = dC, consider a non-chiral 2k-form fl on W, with 

coupling to C given schematically by L ~ = fw  (I d fl + C I 2 + fl/x G). Choose the coefficients 

in Lt~ chosen so that only the anti-self-dual part of  C couples. The "wrong chirality" part 

of  fl is thus present, but decoupled. Under infinitesimal gauge transformations 3fl = a,  
8C --- - d c t ,  (with et a 2k-form), L~ changes by 

3L/~ ~ f o t / x  G. 

w 

(2.13) 

This means that the partition function Z should be understood as a section of  a line bundle 

E over the space of  C's. The fact that only the anti-self-dual part of C couples means that 

Z is actually a holomorphic section. Holomorphy plus gauge-invariance imply invariance 

under complexified gauge transformations, which can be used to reduce to the case that 
C is a harmonic 2k + 1-form, defining a point in H 2k+1 (W, •). The partition function is 

thus naturally induced from a section of  a line bundle over H 2k+l (W, R). To define the 

theory of the chiral two-form, one must carry out holomorphic factorization, throw away 

the antichiral contribution, and divide by "big gauge transformations" so as to descend to 
Jw = H 2k+l (W, R ) / H  2k+1 (W, Z), which is known as the "intermediate Jacobian" of  W. 

Holomorphic factorization leads to a sum of different terms, each associated with a different 

line bundle on Jw. The key to finding the partition function of  the self-dual scalar is to find 

a way to pick out a particular term from this sum, or equivalently a particular line bundle 

on Jw. 

2.3. The line bundle 

Now let us go back to the free-fermion approach to the non-chiral scalar in two dimen- 
sions. The factorization (2.1) still holds after coupling to A, but now the tg~ are functions 

of  A as well as of  the complex structure r of  I7.9 

9 If A is coupled chirally, as above, the Oa still depend on r only; if one uses a vector-like coupling of A, 
the O a would still be the complex conjugates of the Ou. 
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The 69~ can be written as O,~(r, A) = 0,~(r, A ) / ~ ( r ) ,  where the 0~(r,  A) are theta 

functions on the Jacobian J r  (we recall that each A determines a point on J r )  and ~(r )  

depends only on r .  

Because the coupling of  a chiral scalar to a gauge field violates gauge invariance, the 

partition functions 69a (r,  A), in their dependence on A, are not naturally understood as 

functions but as sections of  appropriate line bundles E~ over the Jacobian. We have essen- 

tially seen this already from the bosonic point of view. Moreover - as already indicated - 

the 0~ of  different ot are all sections of  different line bundles over J r .  That is the key to our 

problem. It means that once one finds the line bundle E,~ on the Jacobian, a corresponding 

partition function 69~ of  the chiral scalar is naturally determined. In fact, each E~ has (up 

to a complex multiple) only one holomorphic section, as we will see, and so automatically 

determines its own theta function O,~. 10 This approach, in which the partition function is 

defined by first finding the right line bundle, may at first sound esoteric, but can be imple- 

mented quite uniformly for our three cases: the chiral scalar in two dimensions; the self-dual 

three-form on the five-brane world-volume; and the self-dual five-form of Type l iB theory 

in 10 dimensions. 

2.4. Line bundles on the Jacobian 

Our problem, then, is to study line bundles on the Jacobian J~: of  a Riemann surface E ,  

or the intermediate Jacobian Jw of  a 4k + 2-dimensional manifold W. 

To begin with, consider more generally a 2n-dimensional torus J = R 2 n / F ,  where F is 

a rank 2n lattice in R 2n. A "principal polarization" of  J is an element oo E H 2 ( j ,  72) such 

that 

f <°n ~.~ = 1. (2.14) 

J 

oJ can be represented by a two-form on J which is uniquely determined if  we require it to 

be invariant under translations of  J ;  this will always be assumed. 

An example of  such an ~o is as follows. Let x i , y j ,  i, j = 1 . . . . .  n, be coordinates on [~2n 

such that F is spanned by unit vectors ei and f J  in the x i and yj directions, respectively. Then 

09 = ~ i  dxi A dyi defines a principal polarization. Conversely, any translation-invariant 

two-form o9 representing a principal polarization can be put in such a form by a suitable 

choice of  coordinates. 

10 It may appear that the uniqueness (up to an A-independent but possibly r-dependent multiple) of the 
holomorphic section of Ea determines only the A-dependence and not the r -dependence of the chiral partition 
function ~ga. But the partition function 69~ obeys a heat equation (a special case of the KZB equation obeyed 
by the conformal blocks of the WZW model) that determines its r-dependence when the A-dependence is 
known. The heat equation is a consequence of the Sugawara construction: the stress tensor of the chiral boson 
is the square of the current az~p + A z that couples to A~-. Likewise, the stress tensor of the chiral 2k-form 
is a quadratic expression in the current (d E + C) + (the superscript + refers to a projection on the self-dual 
part), as a result of which there is a heat equation that determines the dependence on the metric of W from 
the C dependence. 
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In the example just given, the pairings of  the two-form co with the vectors ei and f ;  

a r e  

co(ei, f J )  = t~{, co(ei, ej) = co(fi ,  f j )  = 0.  ( 2 . 1 5 )  

Thus, on the lattice F ,  co defines an integer-valued antisymmetric pairing which is non- 

degenerate and "minimal" (the Pfaffian of co is as small as possible - equivalent to assertion 

(2.14) that the volume of  a unit cell is 1). 

If  J is the intermediate Jacobian of  a 4k ÷ 2-dimensional manifold W (so J = H 2k+l (W, 
~)/H2k+l(W, Y)), then F corresponds to the lattice H 2k+l (W, 7/) (mod torsion). The 
intersection pairing or cup product H2k+I(w, 7/) x H2k+I(W, 7/) ~ H4k+2(W, 7/) 
77 defines an integer-valued antisymmetric pairing on F which is isomorphic to (2.15) 

in suitable coordinates. (For instance, if W is a Riemann surface, then the intersection 

pairing on H i can be put in the form (2.15) by a choice of  A and B cycles.) Therefore, 

the intermediate Jacobians of  interest to us are always naturally endowed with a principal 

polarization. The curvature form co associated with this polarization actually can be seen in 

the curvature of  the connection introduced in (2.6). 

Given a metric on W, the intermediate Jacobian Jw has a natural metric defined as 

follows. The tangent space to Jw is the space 142 of  harmonic 2k + l-forms on W. The 

Hodge • operator maps 1,V ~ W with ,2 = _ 1, so it defines a complex structure on Jw. 
A metric on Jw can be defined by saying that for C 6 W,  IICl[ 2 = fw c A • c. This 
metric on Jw is translation-invariant and K~ihler. The associated K~ihler form is our friend 

the polarization of  Jw, co (C, C I) = fw C/x C'. In particular, co is of type (1, 1 ) and positive 

in this K~ihler metric. 

In fact, the partition function of  the chiral 2k-form only depends on the metric on 

Jw and the line bundle/~, up to elementary factors determined by the anomalous Ward 

identities. This is a striking simplification, as the metric on W (on which the partition 

function might depend a priori) depends on infinitely many parameters, but the met- 

ric on Jw, being translation-invariant, depends on only finitely many parameters. This 

result can be seen using the heat equation described in the footnote at the end of 

Section 2.1: since the stress tensor is quadratic in the "currents", the response to a change 

in the metric W can be expressed in terms of  the response to a change in the back- 

ground C-field, and just as for a chiral scalar in two dimensions, the only non-elementary 

terms that arise are those that involve the change in metric of Jw under change in 

metric of  W. 

2.5. From polarization to line bundle 

Since line bundles are classified topologically by their first Chern class, there is topologi- 

cally up to isomorphism a unique line bundle/~ on Jw whose first Chern class is cl (/~) = w. 
However, we need to describe/~ much more precisely. We want to find a U (1) connection 
B on 12, whose curvature F = dB equals 2zrco. This would lead as follows to a definition 
of  the partition function of  the chiral 2k-form. Since 09 is of  type (1, 1) in the complex 
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structure on Jw, the connection B determines a complex structure on E. The index of the 

operator on J ,  with values in E, is 

dimc Jw 
Z (--1) i  dimHi(Jw'E)= f ec'(c)Td(Jw) = f 1. 
i=0 J J 

(2.16) 

(Here Td is the Todd genus; since Jw has a flat metric, Td(Jw)  = 1. We also use (2.14).) 

Since o9 is positive, the cohomology H i (Jw,/Z) ---- 0 for i > 0, I l so the index formula 

actually asserts that H°(Jw,  £) is one-dimensional. Thus, the line bundle E has (up to a 

complex multiple) a single holomorphic section. This section is the desired partition function 

of  the chiral 2k-form, at least as regards the C-dependence. But since the different terms in 

the holomorphic factorization of  the non-chiral 2k-form have different C-dependence, once 

we know the C-dependence we are essentially done. (More fundamentally, as remarked in 

a previous footnote, the r-dependence can be determined once the C-dependence is known 

from the fact that the chiral partition function obeys an analog of  the KZB equation for 

conformal blocks of the W Z W  model.) 

So our basic problem is really to find a U(1) gauge field on Jw whose curvature is 

F = 2rrw. Now, on a simplyconnected manifold, a U(1) gauge field B is determined up 

to isomorphism by its curvature. We are dealing instead with the torus J = R2n/F. (In 

what follows, J can be any torus with a principal polarization, as opposed to Jw which has 

additional structure such as a metric and complex structure. So we drop the subscript W for 

the time being.) To fix B we must give, in addition to the curvature, the holonomies around 

non-contractible cycles in J.  

If  a is a lattice point in F c [~2n, then the straight line from the origin in ~2n to a 

determines a closed curve C(a) in J .  Let H(a) = exp(ifC~a ) B) be the holonomy of B 

around C(a). B will be completely fixed if the H(a) are given. We would like to pick 

the H ( a ) ' s  to preserve, as much as possible, the invariance under the symplectic group 

Sp(2n, 7/) (which acts on F preserving o9). The most obvious choice would be H(a) = 1 
for all a. This is impossible for the following reason. 

The H ( a ) ' s  are constrained as follows. If  a and b are any two lattice points, then 

H(a + b) = H(a)H(b) ( -1)  °~(a'b). (2.17) 

This is obtained as follows. The lattice points 0, a, b, and a + b  are vertices of  a parallelogram 
Aa,b through which the magnetic flux is 2zr to(a, b). The lattice points 0, a, and a + b are 

vertices of  a triangle Ta,b which is just half of  Aa,b; the magnetic flux through Ta,b is 

rr o9 (a, b). The sides of  Ta,o are Ca, CO, and Ca+o. So (2.17) is the usual relation, following 
from Stokes's theorem, between the magnetic flux through a surface S - in this case Ta,b - 
and the holonomy around the boundary of  S. 

A basic question is now whether it is possible to pick a line bundle in a way invariant 
under the Sp(2n; 7/) that acts on J preserving the polarization. Eq. (2.17) shows that this 

11 This is true by the Kodaira vanishing theorem, which uses the fact that 0"0 + 00" is strictly positive, in 
this situation, for i > 0. 
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is impossible; Sp(2n; 71) would require that H(a) = H(b) for all primitive lattice vectors 

a and b, and this is incompatible with (2.17). 12 In particular, (2.17) does not permit us to 

take H (a) = 1 for all a. Eq. (2.17) does, however, allow H (a)2 = 1 for all a. The numbers 

H(a)  2 would be the holonomies around Ca of the connection 2B on the line bundle £ 2  

which we will call .A/[. Thus, there is a completely natural, Sp(2n, 2_z)-invariant line bundle 

M with holonomy + 1 around each Ca and first Chern class 2w. The factor of 2 means that 

(using the index formula as above) H°(J, M )  is of dimension 2 g. We need a line bundle 

£ of first Chern class 1 • w, with just one hoiomorphic section, which will be our partition 

function. 

In searching for an/2 that is "as canonical as possible", we can require that £2 is isomor- 

phic to jk//, or equivalently that the holonomies H(a) of £ are all +1.  The number of such 

£ ' s  is 22n; they differ by H(a) --+ H(a) ( -1 )  E(a) with E ~ HI( j ,  2~2). Thus, the search for 

£ is reduced to the selection among a finite set of possibilities. 

In case J = JE is the Jacobian ofa  Riemann surface 27, we already know from bose-fermi 

equivalence (that is, from the holomorphic factorization of the free boson at the free-fermion 

radius) that to pick an £ out of the 2 2n possibilities, what we need is precisely a spin structure 

on Z'. In the remainder of this section, I will sketch three direct explanations of this fact. 

The first two, though not needed in the rest of the paper (and therefore not explained below 

in much detail), are included because they are short and illuminating. The third explanation, 

though not new [18], is perhaps less well-known. It is this third approach that we will later 

generalize above two dimensions. 

2.6. The determinant bundle 

The first approach is directly related to the free-fermion construction of the chiral boson. 

If we are given a spin structure ot on Z', then we can use the determinant of the Dirac 

operator to obtain a line bundle on JE. 

Thus, given a fiat connection A on 27 representing a point in Js,  let "TA be the corre- 

sponding fiat line bundle on Z'. Let Du(A) be the Dirac operator with values in TA, using 

the spin structure or. The determinant line of D~(A) is a complex line £,~,A, and these fit 

together as A varies to give the desired line bundle £~ ~ J s ,  which can be shown via 

index theory to have the right first Chern class. 13 It thus has a single holomorphic section, 

which is in fact the function O,~ that appears in holomorphic factorization of the non-chiral 

boson. 

12 There is one significant exception; if J is two-dimensional then (2.17) allows H(a) = - 1 for all primitive 
a. This corresponds to the fact that on (and only on) a genus one curve, there is a spin structure that is 
completely diffeormorphism-invariant, namely the "'odd" one (the trivial spin bundle). For dim J > 2, the 
possibility H(a) = -1 for all primitive a is excluded as one can find vectors a, b with a. b, and a + b all 
primitive and w(a, b) = 0. 
13 An important subtlety, which is the reason that one must here use the Dirac operator rather than the 
operator (which does not require a choice of spin structure) is that because Do~('TA) has zero index, E4 
depends in an appropriate sense only on the isomorphism class of TA. That is essential because without 
making any arbitrary choices, Jz parametrizes a family of isomorphism classes of line bundles on Z, but 
non-modular-invariant choices are needed to get an actual family of line bundles. 
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So in particular, a choice of  spin structure on 27 gives a choice of  line bundle on J r .  Of 

course, the discussion has now brought us back to our starting point (2.1), and if we were 

interested only in the two-dimensional case we could have spared much of  our effort. 

2. 7. The shifted Jacobian 

Now we consider briefly another approach which is less obviously related to physics. We 

consider the shifted Jacobian Jr,n of 27, which parametrizes holomorphic line bundles on 

27 of  degree n. They are all non-canonically isomorphic to the ordinary Jacobian J r .  Fixing 

a line bundle S of  degree n, the map T ~ T ® S (where T is a line bundle of  degree zero, 

defining a point in J r ,  and T ® S therefore has degree n and defines a point in Jr,n) is an 

isomorphism between J r  and Jr,n. In particular, the existence of  this isomorphism means 

that each Jr,n is naturally endowed with a principal polarization 09. 

On Jr,g-l, there is actually a completely natural ("modular-invariant") choice of  line 

bundle with first Chern class w; we call it ~i to distinguish it from the desired line bundle 

£ on 27. In fact, a line bundle on a complex manifold can be given by specifying a divisor. 

On J~.g-1, there is a natural divisor, the 69 divisor, that parametrizes line bundles with a 

holomorphic section. It can be shown that the associated line bundle £t  on Jr,g-1 has first 

Chern class co. 

Now if S is any line bundle on 27 of  degree g - 1, then by using S as explained above 

to establish an isomorphism between J s  and Jr,g-l, we can interpret/ : '  as a line bundle 

on J r .  Thus, to find the desired line bundle on J~ all we need to do is to pick an S. There 

is no natural choice of  S. The closest one can come is to set S equal to one of  the 2 2g spin 

structures of  27. (Recall that a spin structure on 27 corresponds to a line bundle of degree 

g - 1 whose square is isomorphic to the canonical line bundle; there are 2 2g of them, and 

they are on the smallest possible orbit of  the modular group in Jr,g-1 .) So we get again 

the expected result: any choice of  spin structure gives a choice of  line bundle £ on J r  with 
first Chern class co. 

2.8. Chern-Simons theory 

Finally, we come to the approach that we will actually use in the rest of  this paper, in 

generalizing above two dimensions. To construct the desired line bundle on the Jacobian of  

a two-dimensional surface, we use the Chem-Simons  functional of  a gauge field in three 
dimensions. 

Let M be a closed oriented three-manifold, and let A be a connection on a U (1) bundle 
T over M. If  T is topologically trivial, so that in a given gauge A is an ordinary one-form, 
the Chern-Simons functional is 

I(A) = ~ EiJkAiOjA~. (2.18) 

M 

If  T is topologically non-trivial, a more powerful approach to defining I is needed. Let X 
be an oriented four-manifold with boundary M, over which A and 7" extend, and pick such 
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an extension. 14 (We assume that the orientation of X is related to that of M by a definite 

convention, for instance "outward normal first". We will abbreviate the statement that X 

has boundary M and (A, 7-) have been extended over X by saying that X has boundary 

(M, A).) Then define 

,f ' f  Ix(A)  = ~ ~ijkloiAjOkA l = ~ EijklFijFkl. (2.19) 

X X 

The point of this definition is, first of all, that if 7- is trivial and A is well-defined as 

a one-form, then by Stokes's theorem, Ix(A)  coincides with I (A)  as defined in (2.18). 

Furthermore, Ix(A)  is defined even if 7- is topologically non-trivial. What remains is to 

investigate the extent to which Ix (A) depends on the choice of X (and the extension of A and 

7-). Given another oriented four-manifold X t with boundary (M, A), one can glue X and X' 

together along their common boundary to make a closed four-manifold Y with a U (1) gauge 

field A; if we reverse the orientation of X t, then the orientations of X and X t match along 

their common boundary, so that Y has a natural orientation. Then Ix (A) - Ix, (A) = ly (A), 
where l/ 

IF(A) = ~ 6ijklFijFkl . (2.20) 

Y 

The point is now that because the cohomology class [F/2rr ] is integral, Iy (A) = 2zr.integer. 

Hence Ix (A) is independent of X modulo 2zr7/; with the understanding that there is this 

2zrT/ambiguity, we henceforth drop the subscript X and refer simply to I (A). 

The fact that I (A) is well-defined modulo 2Jr means that 

e il(A) (2.21) 

is well-defined. U (1) Chern-Simons gauge theory at level one is in fact defined by the path 

integral 

f DA e it(A). (2.22) 

If one considers M to be not a closed three-manifold, but rather M = 27 x N where i2 is a 

Riemann surface and N parametrizes "time", then the moduli space of classical solutions of 

the Chem-Simons  theory is the Jacobian JE (since the equation for a critical point of I (A) 

is F = 0). The quantum Hilbert space is a space of sections of a certain line bundle 3.4 over 

14 Since line bundles are classified by maps to CP ~, the existence of such an X follows from the statement 
that the oriented bordism group ~3 (C poo) vanishes. In fact, a more precise statement (which we will need 
presently) also holds: the spin bordism group ~3(CP °c) vanishes. (This means that if M is a spin manifold 
with a given spin structure, one can choose X with boundary M so that A and the spin structure of M extends 
over X.) The following proof of this was sketched by R Landweber. According to the proposition on p. 354 of 

Spin c _ . .  [ 19], "(23 ( C  P ~ )  = 525 . ~ccoralng to the theorem on p. 337 of the same book, since there are no rational 
Spin c 

characteristic numbers in odd dimensions, S25 is determined by Stieffel-Whitney numbers. A Spin c 
manifold has Wl = w3 = 0. A five-dimensional manifold with w! = 0 has w5 = 0. So a five-dimensional 
Spin c manifold has no non-zero Stieffel-Whitney numbers, and h e n c e  .Q Spinc = 0. 
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Jz . .A~ is roughly the sort of  object that we are looking for. However, since the construction 

is completely diffeomorphism-invariant and in particular no choice of  spin structure has 

entered, .A//is modular-invariant and therefore cannot be the desired line bundle with first 

Chern class co..A,4 is in fact, as we will see, the modular-invariant line bundle with first 

Chern class 2o9 (and all H(a) = 1) that was seen before. 

To better understand A.4, a first orientation is as follows. Let Z be a Riemann surface 

and let N be a three-manifold with boundary E .  Let A be a connection on a line bundle 7- 

over N, and consider the (level one) Chern-Simons  Lagrangian 

i f EijkAi~jAk" LCS = - i I ( A )  = - 2"-~ 

N 

(2.23) 

In proving gauge-invariance, one must integrate by parts, and one picks up a non-zero 

surface term because N has a non-empty boundary. In fact, under 8Ai = -Oia, one finds 

if 8Lcs = ~ a~iJoiAj. 
z 

(2.24) 

Just as in our discussion of  the chiral boson, this violation of  gauge invariance means that 

e -Lcs = e ft(A) is most naturally understood not as a function but as a section of a line 

bundle M over the space of  gauge fields on 27. In fact, the right-hand side of  (2.24) has the 

same form as (2.10), but the coefficient is twice as large; the factor of  two means that .A4 is 

not the desired line bundle £ for the theory of  the chiral boson, but rather .A,4 = £2, as we 

will show more fully later. 

Let us describe more precisely the construction of  .A//. First I sketch a rather down-to- 

earth approach. To describe up to isomorphism a line bundle .A4, with U(1) connection, 

on any given manifold Z, it suffices to define the holonomies of  the connection around an 

arbitrary loop in Z; these must obey certain axioms that will be discussed. In our case, Z 

is the space of  U(1) gauge fields on Z .  Suppose we are given a loop C in the space of  

gauge fields, that is to say a family of  gauge fields on 27 depending on an extra parameter 

0 (0 < 0 < 2zr); 0 parametrizes the position on C. Making the 0 dependence explicit, 

we write Ai(x; O) for this family of  gauge fields, where x is a point in ~7. Now on the 

three-manifold 27 × S 1 , we introduce the gauge field Ac whose component  in the S l (or 0) 

direction is zero, and whose components along S a r e  Ai (x ;  0) .  We define the holonomy of  

.A4 around the loop C to be 

H(C) = e il(Ac). (2.25) 

The property of  the H ( C ) ' s  that is needed for them to be the holonomies of  a connection 

on a line bundle .A//is the following. If C1 and C2 are two loops in Z that meet at a point 

p E Z, and C1 * C2 is the loop made by "joining" Cl and C2 at p ,  one wishes 

H(C1 * C2) = H(C1)H(C2). (2.26) 
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In the present case, this is proved as follows. Let D be a "pair of  pants" with three boundaries 

that we associate with Cl ,  C2, and - C 1  * C2. (The minus sign refers to a reversal of 

orientation.) Then the desired relation 

e il (Ac I *c 2 ) ~ e il (Ac 1 )e il (Ac 2) (2.27) 

follows from definition (2.19) applied to the four-manifold X = Z x D whose boundary 

is the union of  X x C1, X × C2, a n d - X  x C1 * C2. 

One can verify directly from definition (2.25) that if  C is a straight line on the Jacobian 

from the origin to any point a E H 1 ( Z ,  7/) (which we represent by a harmonic one-form of  

the same name), then H(C) = 1. This is done by first finding an oriented three-manifold 

B, of  boundary Z ,  over which a extends as a closed but no longer harmonic one-form 

with integral periods. (B can have very simple topology; it can be a "handlebody".)  Over 

the four-manifold X = B x S l, the gauge field Ac extends in a fairly obvious way (as a 

0-dependent multiple of  a,  with again 0 parametrizing the position on S 1 ) so that F /x  F = 0 

pointwise, and therefore Ix(A) = 0. So as promised several times, A/[ is our friend, the 

modular-invariant line bundle with all H(a) = 1 [20-22]. 

The foregoing constructs an isomorphism class of line bundles .A4 but not an actual 

.A4. If  one is interested in "seeing" an actual .A4 as precisely as possible, one may use 

the following somewhat abstract approach (for full details and a number of variants see 

[20-22]). Given a U(1) gauge field A on Z ,  we must construct a one-dimensional complex 

vector space .A/IA, in such a way that the M A  vary nicely with A, as fibers of a complex line 

bundle .A//. We simply declare that if  N is any three-manifold with boundary Z' over which 

A extends - that is if N has boundary (£ ' ,  A) 15 _ then .A//A has a basis vector lPA(N). 
Given two possible N 's ,  say Nl and N2, we must now exhibit a linear relation between 

1/ra ( N  1 ) and lpa (N2).  This linear relation is chosen to be as follows. Let P be the oriented 

three-manifold obtained by gluing Nl and N2 together (with opposite orientation for N2) 

along their common boundary. Let Ap be the connection (on a line bundle over P )  made 

by combining the chosen extensions of  A over N1 and N2. The relation between lpA ( N  I ) 

and lpA (N2) is then chosen to be 

~A(NI )  = eiI(Ae)~A(N2). (2.28) 

Given many Ni 's ,  one would construct three-manifolds e i j  by gluing Ni to Nj, and set 

lPA (Ni) = e i/(APij)l[rA (Nj);  these relations can be shown to be compatible using the defi- 

nition (2.19) of  the Chern-Simons  functional. Armed with these relations, the ~A (Ni) can 

be interpreted as vectors in a common one-dimensional space TA, which is the desired fiber 

of 7- over the connection A. For a description of  the connection on 7" and explanation of  

its properties, consult the references. 

15 If A is a connection on a topologically non-trivial line bundle Tover 27, then such an N does not exist. 
Instead one fixes a Riemann surface 270 with a line bundle TO of the same first Chern class as T--~ 27, and 
takes N to be a bordism between 27 and Z 0 (extending the line bundles and connection). The rest of the 
construction proceeds as in the text. 
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2.9. Chern-Simons theory at level one-half 

Now it is clear what we need in order to get a line bundle whose first Chern class will be 

o0 instead of  209. We must consider Chern-Simons theory at level one-half. 

In other words, consider the functional 

I(A)2 - 16Jrl f EijklFijFkl, 

X 

(2.29) 

where A is a gauge field on an oriented three-manifold M, and X is an oriented four- 

manifold, of  boundary M, over which A has been extended. If I (A)/2 were well-defined 

(independent of  the choice of  X) modulo 2zr, then by using everywhere e il(a)/2 instead of  

e i f (a )  in the above construction, we would get the desired line bundle of  first Chern class 

0). 

The problem is that, for a closed four-manifold Y, the integral 

1 f EijklFijFkl (2.30) 
16zr 

Y 

is an arbitrary integer multiple of  Jr, but not necessarily an even integer multiple of  n .  This 

comes from the following. Let x be the cohomology class [F/2zr].  Then the integral in 
(2.30) can be interpreted as yrx a. In general, the class x is integral, so x 2 is integral, but 

subject to no other general restrictions. 

Suppose, however, that Y is a spin manifold. If  so, the intersection form on He(y,  77) is 

even: for arbitrary x ~ Ha(y, ~_), x a is an even integer. This is just what we need. If  we 

may assume that the four-manifolds Y in (2.30) are always spin, then (2.30) would indeed 

always be an integral multiple of  2zr. 

If  one wants to encounter only four-manifolds with spin structure, one must begin by 

only considering three-manifolds with a chosen spin structure. Thus, let M be an oriented 

three-manifold with a chosen spin structure. Given a U(1) gauge field A over M, we would 

like to define I (A)/2. (The definition will in general depend on the spin structure of  M.) 

The definition is made by formula (2.29), where X is an arbitrary oriented four-manifold 

of  boundary M, to which A and the spin structure of  M extend. (A proof that such X's  
exist was sketched in a previous footnote.) Any two such X's  will glue together to make a 
spin-manifold Y, for which (2.30) will be an integral multiple of  2zr. Therefore, if I (A ) /2  
is defined using only X's  of  the indicated type, then the definition of  I (A ) /2  in (2.29) is 
independent of  the choice of  X modulo 2rr. 

Now let us tidy up a few details and solve our problem. We are given a Riemann surface 
27 with a spin structure or. We want to find a line bundle E,, over the Jacobian JE, with 

a connection, compatible with the polarization of Jx .  Given a loop C in the space of  
connections on 27, we build (as above) the associated gauge field Ac = Ai ( x ; / 9 )  on the 
three-manifold M = ~7 × S 1 . We give M the spin structure which is the product of  the spin 
structure ot on 27 with the "Neveu-Schwarz" spin structure on S l (this is the "antiperiodic" 
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spin structure, the one which arises if S 1 is regarded as the boundary of a disk). We then 

characterize/~ by declaring its holonomy around C to be 

H(C) = e i l ( a c ) / 2 .  (2.31) 

The need to use the antiperiodic spin structure on S l emerges when one tries to prove that 

H (C1) H (C2) = H (C1 * C2). The proof of this involves the four-manifold 27 x D, where 

D is a "pair of pants" (with C1, C2, and -C1 * C2 on the boundary). The reason that one 
must use the antiperiodic spin structure on the boundary components is that (i) one needs to 

use the same spin structure on each boundary component, to treat them all symmetrically 

(or the H(C) ' s  will not obey the appropriate factorization); (ii) the spin structure on the 

boundary of D must extend over D. The two conditions together are satisfied precisely if 

the spin structure on the boundary is antiperiodic. 

2.10. A note on bordism 

Happily, this is the end of the story for the chiral boson, at least for the present paper. 

But with an eye to generalizations, we will say a word about how bordism really enters the 

construction. 
The above recipe for defining the line bundles £c~ used the fact that if M is a spin three- 

manifold with line bundle T,  then there is a four-manifold X, with boundary M, over which 
the spin structure of M and the line bundle T extend. This is described mathematically by 
saying that $'2~pin(cp°°) = 0, a fact discussed in a previous footnote. 

What would we say instead if I2~pin(cp°°) were non-zero? To make the discussion 

definite, suppose that 523Pin(cp°°) were 7/2. Pick a three-manifold M0 with a U(1) gauge 

field A0 such that the pair (M0, A0) represents the non-zero element of ff23Pin (C BOO). There 

is then no natural way to define I(Ao)/2,  since no appropriate X exists for the definition 
(2.29). However, if ~ p i n ( c p ° ° )  = 272, then there exists an X whose boundary is two 

copies of (M0, A0). By using this X in (2.29), we can define w = 2 • l (Ao)/2 .  There are 
now two candidates (namely w/2  and rr + w/2)  for what I (Ao) /2  should be. Pick one of 

them. 
Once I (Ao) /2  has been defined, one can define I ( A ) / 2  for any U(1) gauge field A 

on a three-manifold M. In fact, the pair (M, A) is either the boundary of some X or is 

bordant to (M0, A0) via some X (that is, there is an X whose boundary is either (M, A) or 
(M, A) - (M0, A0), where the minus sign represents a reversal of orientation). Taking the 
integral in (2.29) to define either I ( A ) / 2  or I ( A ) / 2  - I (Ao) /2  as the case may be, we get 
(since I (A0)/2 has already been defined) a general definition of I (A)/2. This definition can 
be used to define the line bund le /~  ~ J,r for every spin surface (27, or). The definition is 
invariant under u-preserving diffeomorphisms of 27, but will depend on the choice that was 
made in defining I(Ao)/2.  Thus, we get a definition of the/~c,'s that is diffeomorphism- 
invariant to the expected extent, but depends on a 27-independent choice in the definition 
of I (A0)/2. This choice is roughly analogous to the choice of a discrete theta angle. 
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The generalization from 7/2 to an arbitrary group is easy to state. Let H = Hom(123Pin 

(CP°°),  U (1)). Then H classifies the possible definitions of  I (A) /2 ,  and thus the possible 

recipes for the association (27, or) ~ £~.  The sort of  "discrete theta angle" that has just  

been described will turn out not to appear for five-branes - as the relevant bordism group 

is zero - but may appear in other, similar examples. 

3. Chiral two-form on five-brane world-volume 

In this section, we will use a differential form notation to avoid a proliferation of  unillu- 

minating constants. For  instance, if M is a three-manifold with U(1) gauge field A, and X 

is a four-manifold with boundary (M, A), we write x = F/2zr, and we define the Chern-  

Simons functional simply as 

I (A)  = f x A x .  (3.1) 
J 

x 

This is aimed to make it clear that - as f x  x / x  x would be an integer for X a closed four- 

manifold - I (A) is well-defined with values in Ry2zrT/. We also will omit  wedge products 

and write x 2 for x / x  x. 

Now, consider a chiral two-form fl on a six-manifold W. First we consider W in isolation; 

then we consider a more general case - relevant to M-theory - in which W is embedded in 

an 1 1-dimensional spin manifold Q, satisfying certain physical  conditions. 

We know from Section 2 that to study the chiral two-form, we should introduce the 

intermediate Jacobian Jw of W. This carries a natural polarization 09 6 H2(Jw,  7/), and 

we must find a line bundle on Jw whose first Chem class is 09. The partition function of  the 

chiral two-form is then uniquely determined. 

We also know that to find a line bundle on Jw, we should consider Chern-Simons theory 

in seven dimensions. Let then M be a seven-manifold with a three-form field C. Actually, 

the field C we want is not a three-form in the standard sense. The field strength G = dC 

is allowed to have 2rr periods (this statement will soon receive a slight modification), and 

the gauge transformations C ~ C + de (e a two-form) are to be supplemented by "big" 

gauge transformations adding to C a closed three-form with 2re periods. The relation of C 

to a conventional three-form is just  like the relation of  a U (1) gauge field to a conventional 

one-form. Anyway, given such a C, we want to define the Chern-Simons  functional I (C). 

This is done in a fashion that should be familiar. Let X be an oriented eight-manifold 

with boundary M over which C extends. 16 We describe this in brief by saying that X has 

boundary (M, C). Let x = G/2rc. The Chern-Simons  functional is then 

16 Existence of such an X depends on whether the pair (M, G) vanishes in ~Q7(K( 7/, 4)) (which classifies 
bordism classes of seven-manifolds with a four-dimensional cohomology class). I do not know if that group 
vanishes; if not, the considerations raised at the end of Section 2 will enter. But presently we will put a spin 

• S i n  . , condition on M, and then the relevant bordlsm group becomes f27P (K (zT, 4)), which does vamsh by a result 
of Stong [23]. 
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(C) = 2zr f x 2. (3.2) I 
J 

x 

This definition makes it clear that I (C) is well-defined modulo 2rr. Therefore, I (C) can be 

used exactly as in Section 2 to define a line bundle A4 over the intermediate Jacobian Jw of 

a six-manifold. However, since the construction is completely diffeomorphism-invariant, 

.A4 can hardly be the line bundle we want. In fact, rather as for the chiral scalar in two 

dimensions, .A4 is the line bundle of  first Chern class 2o9 and holonomy one around every. 

straight line in Jw. 
To make progress, we must define I (C) /2  modulo 2rr. Then the Chern-Simons con- 

struction of  line bundles, starting with I (C)/2,  will give the fight line bundle. 

To define I (C) /2  modulo 2st, some additional structure is needed. Recalling the case of 

the chiral scalar, and with an eye on physics, in which spinors are present, one's first thought 

is to assume that M is a spin manifold with a chosen spin structure (and restrict X so that 

the spin structure of  M extends over X - such an X exists as noted in the last footnote). 

If it were the case that the intersection form on H4(X, 77), for an eight-dimensional spin 

manifold X, were always even, our problem would be solved. The even-ness of  x 2 in the 

spin case would give a factor of  two in (3.2), so that I (C) /2  would be well-defined modulo 
27r. 

It is, however, not true that the intersection form on the middle-dimensional cohomology 

of  an eight-dimensional spin manifold is even. Indeed, the quaternionic projective space 
HP 2 is a simple counterexample. (H4(Hp 2, 7/) = 77, and the intersection form is the 

unimodular, but not even, form with f ( x )  = x2.) Instead there is the following relation. Let 

Pl be the first Pontryagin class of  X. In any dimension, there is a canonical way to divide 

the first Pontryagin class of  a spin manifold by two to get an integral class that we will call 

,k. Then for any v ~ H4 ( X, 7/), 

v 2 = v • ~. modulo 2. (3.3) 

(A proof of this using E8 index theory is at the end of Section 4 of [4].) This can be rewritten 

as the statement that 

This suggests that we should be the following. Instead of  asking that G/2rr should be 

integral, we require 

= ~ - v ( 3 . 5 )  

with v an integral class. This is in fact the correct quantization law for G in M-theory [4]. 

Then, with x still denoting G/2zr, we modify the definition of 1 (C) slightly and take 

i(c) - f (x2 - (3.6) 

x 
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Since x = ~./2 - v with integral v, it follows from (3.4) that [(C)/2 is well-defined modulo 

2Jr and so can be used to define a line bundle L; (just as we would have done with I(C)/2 
had that been well-defined modulo 2zr on the original class of  G's) .  

As we have divided by two, L; has the desired first Chern class, Cl (L;) = co. We do have 

to be a little careful in describing where /~  is defined. Because the quantization law of  G 

has been shifted, G = 0 may not be allowed. To be more precise, (3.5) permits G = 0 

precisely if  ~. is even. I f  ~. is not even, the above construction gives a line bundle L; not on 

the intermediate Jacobian Jw but on a shifted version of  it with G/2zr congruent to ~./2 

modulo integral classes. 

In the application to M-theory, with W understood as the world-volume of  a five-brane, 

one can assume (because of  the world-volume equation dT  = G) that the restriction of  G 

to W has vanishing cohomology class. (Also (3.5) means therefore that the restriction of  ~. 

to W must be even.) In this situation, it is the ordinary, unshifted intermediate Jacobian Jw 
on which the above construction gives a line bundle. 

The main point is that as the correction to quantization of  G needed to define [ ( C ) / 2  

is the same as the one that appears in the physics,  the line bundle appears precisely in the 

right place. 

3.1. Embedding in 11 dimensions 

So far, we have considered the chiral two-form on a "bare" six-dimensional spin manifold 

W. 

We are really interested in an M-theory application in which W is a six-dimensional 

submanifold of  an 11-manifold Q. Moreover, W, though oriented, is not necessarily spin; 

it is Q that carries a spin structure. 

We will assume for simplicity that W is compact.  More general cases, in which for 

instance W is asymptotically fiat, are also natural; in such cases, some knowledge of  what 

is happening at infinity can serve as a substitute for compactness. 

The discussion in the last subsection was adequate if  the normal bundle to W in Q is 

trivial - that is if Q looks locally near W like W x R 5. If  so, the normal directions can 

be decoupled from the discussion and what we are about to say reduces to what was said 

above. 

The first question we might want to ask is how to achieve gauge-invariance even locally 

for the three-form field C of  M-theory. We recall that C is coupled to the chiral two-form 

15 on the five-brane, and that this coupling is not invariant under gauge transformations 

3C = - dot of  the C-field. The failure of  gauge-invariance was described in (2.13): 17 

8Left ~ f o t / x  G. (3.7) 
t /  

Q 

17 Of course, (2.13) is the violation of gauge invariance for a non-chiral two-form with chiral coupling to 
C, while we want a chiral two-form. The difference between the two is crucial in discussing subtle global 
issues such as those considered in this paper, but not for studying local perturbative anomalies. 
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The numerical coefficient multiplying the right-hand side can be most usefully described 

as follows. Suppose that W is the boundary of  a seven-manifold M. Let 1 (C) be the seven- 

dimensional Chern-Simons functional defined in (3.2). It is gauge-invariant on a closed 

seven-manifold, but not on a seven-manifold with boundary. In fact, 

~tef  f = ½M(C). (3.8) 

This factor of  one-half is the reason that in the discussion above it was necessary to define 

a version of I (C)/2.  Upon taking W = Z' x CP 2, with ~' a Riemann surface much larger 

than the CP 2, the chiral two-form on W reduces to a chiral scalar on Z', and the factor of  

1/2 in (3.8) reduces to the factor of  one-half difference between (2.10) and (2.24) which 

was essentially the subject of section two. 

We must find another interaction in the theory that can cancel the anomaly (3.8). In the 

first instance, this interaction is simply the classical interaction I0 = const • fQ C A G A G 
of 11-dimensional supergravity. The normalization of  I0 can be most usefully described by 

noting that if Q is the boundary of a 12-manifold Y over which G extends, and x ---- G/2zr, 
then 

l0  - -  6 x A x A x .  ( 3 .9 )  

Y 

The factor of  --1/6,  which was important in [4], is related to E8 index theory as explained 

there. 

To prove that I0 is invariant under ~C = -do t ,  one must integrate by parts and use 

dG = 0. But in the field of  a five-brane, dG is not zero; it is a delta function supported 

on the five-brane world-volume W. So instead of  being zero, the gauge variation of  10 is a 

multiple of  fw o~ A G, and can potentially cancel (3.7). That the cancelation actually occurs 

is a consequence of  the formula ( 1/2) + 3 ( -  1/6) = 0, where the l / 2  is present in (3.8), the 

- 1 / 6  in (3.9), and the 3 reflects the fact that in comparing the 1 l-dimensional interaction 

Io ~ CGG to the seven-dimensional interaction Il "~ CG, one takes one of  the three fields 

in I0 to be in the normal direction to W and two to be tangential; there are three ways to do 

this. 

What we have just analyzed is a piece of perturbative anomaly cancelation for five- 

branes, namely the term involving C only. One should also consider perturbative gravita- 

tional anomalies for five-branes. Some such terms were studied in [6,10]; a more complete 

discussion is in Section 5 .  Because of  invariance under sign change of  C together with re- 

versal of  orientation of the normal bundle, there are no "mixed" C-gravitational perturbative 

anomalies. 

3.2. Definition of the line bundle 

We now have the crucial clue for how to find the desired line bundle Z~ --+ Jw and 

therefore the desired partition function. In the previous examples (chiral boson and chiral 
two-form on a "bare" six-manifold), the key was to find a Chern-Simons interaction (in a 
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higher dimension) that is gauge-invariant on a closed manifold but not in the presence of 

a boundary. We now do exactly the same thing, but the higher dimension will be 11 (and 

not seven, as the previous experience might suggest), and the word "boundary" must be 

replaced by "five-brane". 

Thus, in M-theory, there is a Chern-Simons interaction, schematically IM = CGG + 

CI8(R), where the CGG term is the interaction I0 considered above, and 18(R) is a certain 

quartic polynomial in the Riemann tensor [5,6]. The expression 

W = detDRs e jIM (3.10) 

with det DRS the Rarita-Schwinger path integral, is well-defined [4] on a closed 11-manifold 

Q. 18 The two factors are not separately well-defined, but as explained in [4], one can 

alternatively factor (3.10) as follows: 

W = {detDRs e ilRs/2} • e lie8 . (3.11) 

Here IRS is a properly normalized Chern-Simons term related to the Rarita-Schwinger 

operator, and lea is a properly normalized Chern-Simons term related to E8 index theory. 

The virtue of  the factorization in (3.11) is that the C-dependence has been put entirely in 

J = eiles, which is a conventional Chern-Simons term, so our general framework will 

apply. The factor in curly brackets in (3.11) will play practically no role in the discussion. 

On an 11-manifold Q that has a boundary R, J is not gauge-invariant in the usual sense, 

but rather must be interpreted as a section of  a line bundle, which we will now call E -  1, over 

the space of  fields on R. This line bundle E -  1 can be described somewhat more concretely 

by arguments given in Section 2. Those arguments, after all, had a purely formal character: 

given any Chern-Simons interaction - such as IE8 - which is well-defined on a closed 

manifold but not on a manifold with boundary, one always produces a line bundle over a 

suitable space of  fields on the boundary. Once E -1 is found, the chiral two-form partition 

function must be a section of  the inverse line bundle E (to cancel global as well as local 
anomalies), and therefore its partition function is determined. 

Let us now go over some of  that ground in a little more fully. Five-branes may sound 

different from boundaries, but for the present purposes, the two are quite similar. If  W 

is a five-brane world-volume in a space-time Q, then the G field has a singularity along 

W. Since singularities are awkward at best and the low energy field theory description is 
really not valid near the singularity, one might want to cut out of  space-time a small tubular 
neighborhood of  W. The boundary of  that neighborhood is a 10-manifold R which is an S 4 

bundle over W. The fact that W was a five-brane world-volume is now captured by saying 
that is S is a fiber of  R ~ W, then 

/° = 1. (3.12) 

R 

18 The bordism statement used here is of course Stong's theorem [23] that £2~Plin(K(7/, 4)) = 0. 
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A sensible definition of the chiral two-form partition function should depend only on 

the local geometry near W - which means, apart from a knowledge of W itself, only a 

knowledge of the normal bundle to W in Q and a choice of spin structure on a neighbor- 

hood of W in Q. All these informations can be summarized by giving the 10-manifold 

R, together with the map R --~ W obeying (3.12), and a spin structure on R. (As the 

normal bundle to R in Q is a trivial real line bundle, the spin structure on Q induces 

one on R.) To obtain a definition of the chiral two-form partition function that only de- 

pends on the geometry near Q, we should show that we can make the definition given only 

R. 

The first step is to define a line bundle £ -  1 over the space of C-fields on R, with an action 

of the local and global gauge transformations. For this we need a well-defined Chern-Simons 

action on a closed 11-manifold; we choose for this the object les.  With this Chem-Simons  

action, the construction in Section 2 now produces a line bundle £ - 1  over the space of 

C-fields on R. We recall that this is done as follows: given a loop L in the space of C fields 

on R, one builds a CL field on R x S l, and declares the holonomy of/2-1 around L to be 

the value of eile8 on R x S l with C ---- CL, the antiperiodic spin structure on S 1, and the 

product metric on R × S 1 . 19 

To finish, then, all we need is a map i from C-fields on W to C-fields on R that obey 

(3.12) (commuting with local and global gauge transformations). Given such a map, we 

use i to "pull back" the line bundle /2-1  from the space of C-fields on R to the space of 

C-fields on W, and this gives finally the gauge-invariant line bundle we need on the space 

of C-fields on W. 

The desired i is found as follows. Let Jr : R --~ W be the projection, and let r : R --~ R 

be the map that commutes with Jr and acts as - 1 on each S 4 fiber of zr. A solution Co of 

(3.12) can be described uniquely up to gauge transformation by saying that Go -- dC0 is 

harmonic (remember that Co can have Dirac string singularities, so that this is possible) 

and that the field is odd under r.  20 The desired map from C-fields on W to C-fields on R 

is C ---~ zr*C + Co. 

Via i, we pull back/2-1 to the space of C-fields on W. Restricting to C-fields with G = 0 

and dividing by local and global gauge transformations, we get a line bund le /2 -  I over Jw. 

The chiral two-form partition function is determined by the fact that it is a section of the 

dual line bundle/2. 

19 An important detail must be checked here. The factorization in (3.11), by which we eliminated the 
determinant and reduced to Chern-Simons theory, is unique only up to IE8 ---> IE8 + 1', where I '  is a 
properly normalized Chern-Simons interaction constructed from the metric only. To really have a unique 
construction of E-  1, the holonomy around the loop L should be independent of the choice of factorization. 
This is true since R× S 1 with product metric is the boundary of R x D with product metric (D being a 
two-disk), and the relevant curvature polynomials are all zero pointwise on R x D with product metric. 
20 For existence of such a field, take any solution CO of (3.12) with harmonic GO, and replace it by (C O - 
r'Co)/2. For uniqueness, note that if CO and C6 both obey the conditions, then C' = C O - C~ is a closed 
three-form odd under r and therefore (since r acts as +1 on H3(R, 2~), which is isomorphic to H3(W, ~)) 
vanishes up to gauge transformation. 
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4. Chiral four-form in I0 dimensions 

Now we move on to the other somewhat similar example: a chiral four-form V in 10 

dimensions, which appears in Type liB superstring theory. 

The field strength of  2/is a self-dual five-form L. It does not obey dL = 0, as one might 

have guessed. Rather, if B i , i = 1,2, are the two two-forms of Type liB supergravity (which 

of  course transform in the two-dimensional representation of  S 0 ( 2 ,  7/)), and H i = dB  i, 

then the relation is 

d L  = f i j H  i A H j .  (4.1) 

This means that if we set E = Eij B i A H j , then E behaves as a sort of"composite five-form 

gauge field" that is coupled to V, just as a U (1) gauge field can be coupled to a chiral scalar 

in two dimensions, and the C-field of  11-dimensional supergravity is coupled to the chiral 

two-form on a five-brane world-volume. 

From Section 2, we know that the partition function of  the chiral four-form V on a 10- 

dimensional spin manifold W will be a section of  a line bundle L; over the intermediate 

Jacobian J w ,  and that finding the partition function is equivalent to finding a line bundle £ 

whose first Chem class equals the polarization o) of  J w .  We also know that we can always 

use Chern-Simons theory to find a line bundle of  first Chern class 2o9, and that we can use 

Chern-Simons theory to find a line bundle of  first Chern class o) provided that, for a closed 

12-dimensional spin manifold X, the intersection form on H 6 ( X ,  7/) is always even. This 

last statement is, happily, true (unlike its counterpart in eight dimensions, whose falsehood 

made the last section more complicated). 

More generally, in fact, the intersection form on the middle dimensional cohomology of 

a closed spin manifold is always even in 8k -t- 4 dimensions. A proof of  this using the Adem 

relations for the Steenrod algebra has been described by J. Morgan. 21 

One point that should be made about the chiral four-form in 10 dimensions is that in 

using Chern-Simons theory to define the line bundles, the bordism group that one meets 
is ~2~pin(K(27, 6)). (This is the bordism group of  an 11-manifold endowed with a six- 

dimensional class; it enters in the same way that ~3Pin(K(2 e, 2)) = ff23Pin(cp°°) entered 

in Section 2.) As far as I know, this group has not been computed, and might conceivably be 

non-zero. If  so, then as described at the end of  Section 2, a sort of  exotic "theta angle" would 
appear in the theory, parametrized by the dual group H ---- Hom(S2~lpin(K(7/, 6)), U(1)). 

Such an extra parameter in Type liB superstring theory seems unlikely, so one might con- 
spin 

jecture that in fact 1-211 (K(7/, 6)) = 0. 

21 The argument is as follows. In 8k + 4 dimensions, one has a relation in the Steenrod algebra Sq 4k+2 = 

Sq 2 Sq4k + Sq I Sq4k Sq 1. Let x be an element of H 4k+2 ( X, 2e 2), with X an 8k +4-dimensional spin manifold. 
Then modulo two, one has x 2 = Sq 4k+2 (x) = Sq2(Sq4kx)  +Sq 1 (Sq4kSq Ix) . The right-hand side vanishes, 
since Sq 2 and Sq 1 , as maps to the top dimension, are multiplication by w2 and Wl, which vanish for a spin 
manifold. 



E. Witten/Journal of Geometry and Physics 22 (1997) 103-133 

4.1. An example 

127 

It may be helpful to present a concrete example, to show that if we are given a specific 

10-manifold W (or similarly a specific six-manifold and normal bundle in the five-brane 

case) we actually can use these considerations to find the line bundle E and therefore the 

partition function of  the chiral field. 

The example I will consider is W = S 5 x S 5. Call the two factors S~ and S 5. The middle- 

dimensional cohomology is H 5 (W, 7/) = 7 / ~  77, with the two 77's coming cohomology of 

the two SS's. The intermediate Jacobian is Jw = ~ 2 / ( 7 / ~  77). Let a and b be the lattice 

points (1, 0) and (0, 1) in 7 / ~  7/. There are two distinguished straight lines Ca and Cb in 

Jw, induced by the straight lines from the origin to a or b. I claim that the line bundle E 

made from the Chern-Simons construction has holonomy 1 around Ca or Cb. According 

to (2.17), this determines the holonomy around all cycles and uniquely determines the line 

bundle/2. (For instance, the holonomy on a straight line from the origin to (1, 1) is - 1.) 

The Chern-Simons construction involves the coupling of the chiral four-form to a back- 

ground five-form E. (In Type liB superstring theory, E is a composite field, found in the 

discussion of  (4.1), but for the present purposes E might as well be elementary.) For instance, 

to compute the holonomy around Cb, we must consider the 1 l-manifold M 5 5 = S l x S  2 x S  l, 
with an E -field which is the pull back of  an E-field on S 5 x S 1, and such that if K = dE 

is the field strength, then fssxs  1 K = 1. (E may also be taken to vary linearly in the S l 

direction, but we will not need this.) Now, we can regard S~ as the boundary of  a ball B 6, 

over which the spin structure extends. So M is the boundary of  X = B × S 5 x S 1 . The 

E-field on X can be a pull back of an E-field on S~ x S l . The holonomy around Cb is to 

be computed from fx  K/x K. But this vanishes, since (E being a pull back from the last 

two factors), K/x  K actually vanishes pointwise. 
So the chiral four-form partition function on S 5 x S 5 is determined. As a mathematical 

corollary, note that it follows that, since S 5 x S 5 has only one spin structure, which is there- 

fore preserved by all orientation-preserving diffeomorphisms, the diffeomorphism group of  
S 5 × S 5 does not induce the full SL (2, 7/) action on H 5 (S 5 × S 5, 7/), but at most the subgroup 

preserving the particular line bundle/2. (This subgroup can be shown to be of  index three.) 

By contrast, in the superficially similar case of  S l × S 1, the diffeomorphism group does 
induce the full SL(2, 7/) action on H I ( s  1 × S l, 7/). 

5. Perturbative anomaly cancelation for five-branes 

In this section, we re-examine perturbative anomaly cancelation for M-theory five-branes. 
We have already verified anomaly cancelation for the C-field gauge invariance in Section 3. 

It remains to consider gravitational anomalies. It turns out that this leads to a surprisingly 
long story - nothing about five-branes seems to be straightforward! - and we will get a 

complete answer only for Type IIA, not for M-theory. 
The five-brane world-volume is a six-manifold W in an 1 1-manifold Q. W is oriented, 

and (though this requirement can be relaxed, as M-theory conserves parity) we will consider 
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only the case that Q is oriented. Let T Q be the tangent bundle to Q and T Q Iw its restriction 
to W. We have TQIw = T W  ~ N, where T W  is the tangent bundle to W and N is the 
normal bundle to W in Q. N, in particular, is an SO(5) bundle over W. 

Note that a Riemannian metric on Q induces a Riemannian metric on W, and a metric 

and SO(5) connection on N. The theory along W therefore has some features of gravity 

coupled to SO (5) gauge theory. 

In analyzing anomalies, it is enough to consider only diffeomorphisms of Q that map W 
to W, since the presence of the five-brane wrapped over W explicitly breaks other diffeo- 

morphisms. A diffeomorphism of Q that maps W to W induces first of all a diffeomorphism 

of W and secondly an SO(5) gauge transformation of the normal bundle. In fact, diffeo- 
morphisms of W and SO(5) gauge transformations are all that the the world-volume fields 

(and anomalous interactions) "see" (at least in the long-wavelength limit that suffices for 

computing anomalies) so the discussion will amount to an analysis of gravitational and 
SO(5) gauge anomalies on W. 

Perturbative anomalies in 2n dimensions are always related to characteristic classes in 
2n + 2 dimensions, so in the present case - as W is six-dimensional - the anomalies will 

involve eight-dimensional characteristic classes. It turns out to be rather helpful to write 

the anomalies in terms of Pontryagin classes p i ( T W )  and pi(N).  The anomaly eight- 
form is then a priori a linear combination of p2(T W), Pl (T W) 2, Pl (N)pl  (T W), Pl (N) 2, 

and p2(N). The terms involving p i ( T W )  only have been analyzed before [6,10]; we will 
extend the analysis to include the other terms. As we will see, the discussion is surprisingly 
unstraightforward. The known and expected contributions to the p I (N) p 1 (T W ) and p I (N) 2 

anomalies will cancel, but something new is involved in the cancellation of the p2 (N) term. 

There are three known sources of anomalies: (1) world-volume fermions; (2) the chiral 
two-form; (3) the Chern-Simons couplings of the bulk theory, whose gauge invariance fails 

in the presence of the five-brane. Their contributions can be determined as follows. 

5.1. World-volume fermions 

The world-volume fermions are (four-component) chiral spinors on W with values in the 
(rank four) bundle S(N)  constructed from N by using the spinor representation of SO(5). 
According to standard anomaly formulas [24], the contribution of these fields to the anomaly 
is 

ID = ½chS(N). A ( T W ) ,  (5.1) 

where the 1/2 arises because of considering chiral spinors, ch is the Chern character, and 
up through dimension eight 

A ( T W )  = 1 p l ( T W )  7 p l ( T W )  2 - 4p2(TW)  
2-------~ + 5760 (5.2) 

To compute chS(N), we note that if the Chern roots of the SO(5) bundle N are +~-1, 4-Z2, 
and 0, then the Chern roots of S(N) are +0~1 -4- Z2)/2. So up through terms quartic in the 
~.'s, 
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c h S ( N ) =  Z exp[l('~l)`l "+-•2)`2)] 
El ,E2=-i- 1 

= 4 +  ~()`1 + + 
----4+ l p l ( N  ) + l p l ( N ) 2  + l p 2 ( N  ). (5.3) 

In the last step we used Pl (N) )`2 + ),92, pz(N) 2 2 = = )`1)`2" The detailed form of I0  can be 
obtained by combining the last three equations. 

5.2. The chiral two-form 

The chiral two-form propagates on W and does not "see" the normal bundle. The standard 
anomaly of such a field is 

Ia ---- 5--~60 (16pl (TW) 2 - 1 12p2(TW)). (5.4) 

5.3. Anomaly inflow from the bulk 

The third term to consider is the anomaly inflow from the bulk. The 11-dimensional 
bulk theory has an interaction proportional to I = C A (Pl (T Q)2/4 - p2(T Q)), where 

P l (T Q) and p2 (T Q) can be understood as certain polynomials in the Riemann tensor of 

Q. It is important that what appears in i is the Riemann tensor (and therefore the Pontryagin 
classes) of Q, not those of W; after all, i is an interaction defined in the 11-dimensional 

bulk theory. The relevance to perturbative anomalies of [ is that, although gauge-invariant 
in bulk, it is not gauge-invariant in the field of a five-brane. The anomaly IB coming from 
this term is 

IB = -4~(¼P1(T QIw) 2 - p2(T QIw)). (5.5) 

As TQIw = T W O N ,  w e h a v e p l ( T Q I w )  = P 1 ( T W ) + p l ( N ) , p 2 ( T Q I w )  = p 2 ( T W ) +  

p2(N) + Pl (N)pl  (TW).  (5.5) can thereby be rewritten 

1B = - ~ ( ¼ ( P l ( T W )  2 + p l (N)  2 - 2 p l ( T W ) p l ( N ) )  - p2(TW) - p2(N)). 

(5.6) 

Upon summing up (5.1), (1.2), and (5.6), one finds that all terms involving p i (TW)  

cancel (both the purely gravitational term and the "mixed" term Pl (T W)pl (N)), as does 
the Pl (N) 2 term. The remaining anomaly is in fact 

= l p 2 ( N ) .  (5.7) 

So something new is needed. It turns out that it is easier to understand the new ingredient 
if one considers the problem in Type IIA superstring theory rather than in M-theory. In 
other words, we take Q to be M × S 1 , where M is a 10-manifold, and we consider the case 
that the five-brane world-volume W is a submanifold of M (times a point in S l ). M-theory 
then becomes equivalent to Type IIA superstring theory, and the five-brane becomes the 
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solitonic five-brane of  Type IIA, which couples magnetically to the string theory two-form 

B (of field strength H = d B ) .  

The normal bundle N then becomes N = N t ( 9 0  where O is a trivial one-dimensional 

bundle (representing the tangent bundle to S 1) and N '  (the tangent bundle to W in M) is an 

SO(4)  bundle. In particular, pi(N)  = pi(N')  for i = 1, 2. 

One thing that is special about SO(4),  however, is that for an SO(4) bundle - such 

as N '  - P2 can be written in terms of  a four-dimensional class, called the Euler class of  

the bundle, x(N~). This has its roots in the fact that at the Lie algebra level, SO(4)  = 

SU(2) x SU(2),  so that an SO(4)  bundle has two four-dimensional characteristic classes - 

pl and X - related to the instanton numbers in the two SU(2) 's .  These are the independent 

characteristic classes of  an S O (4) bundle (in general a Lie group of  rank r has r independent 

such characteristic classes). So in particular P2 can be written in terms of  these. The relation 

is in fact p2(N' )  ---- x ( N ' )  2. P2 can be derived from the function ~.1)~22 2 of  the Chem roots 

and X can be derived from the function ~.1~.2. An expression p2 - - - -  X 2 can exist in SO(4)  

but not in S O (5) because the function ~ 1 ~-2 is Weyl-invariant in S O (4) - whose Weyl group 

acts on the )~i with pairwise sign changes - but not in SO(5),  whose Weyl group generates 

independent sign changes of  the ~-i. 

Some notation concerning the Euler class will be helpful. We represent an object a 

transforming in the adjoint representation of  SO(4)  by a 4 x 4 antisymmetric t e n s o r  Ol i j ,  
i, j = 1 . . . . .  4. In particular, the curvature F of  an SO(4)  connection A is a two-form 

F i j  with values in that representation. The Euler class is represented by the four-form 

X (F) = Eijkl Fij /~ Fkt/32yr2, where Eijkl is the fourth rank invariant antisymmetric tensor 

of  SO(4).  Locally, given a choice of  gauge, X (F)  is the exterior derivative of  a Chern-  

Simons three-form that we call 52 x (A): X (F)  = d~2 x (A). If  or is an S O (4) gauge generator, 

we write X (ct, F)  : EijklOl ij Fk l /16rr  2. The gauge variation 6,~ ~2 x of  S2 x under a gauge 
transformation by ot is 

,~off2 x (A) = d (X (or, F ) ) .  (5.8) 

This equation is part of  the "descent" formalism familiar in the study of  anomalies. 

5.4. The Euler class 

The anomaly of  interest is thus - in the Type IIA context - X (N')2/24,  and it will be 
necessary to have some understanding of  the particular meaning of  the characteristic class 

x (N ' ) .  
The basic question we have to focus on is: what is the H-field (that is, the three-form 

field strength of  Type IIA) produced by a five-brane world-volume W in a 1 0-manifold M? 

The following considerations only involve the behavior near W, and so only depend on the 
topology of  the normal bundle N '  to W in M. We can in fact replace M with the total space 
of  N' .  

The H-field is supposed to be a three-form such that d H  = 8w, where 6w is a delta 
function supported on W. Such an H is not uniquely determined, as one could add any 
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smooth, closed H-field. However, there is an obstruction to existence of H: the obstruction 

is that X (N~) must vanish. This is explained in [25], beginning on p. 70. 

The essence of the problem is to precisely formulate what 3w is supposed to be. 3w 

should be a four-form on M which is closed, is supported in a small neighborhood of W 

in M, and (if one identifies M with the total space of N r) integrates to 1 over any fiber of 

N/--+ W. 

If B is a differential form on a manifold M, the restriction of B to a submanifold W, 

written B I w, is obtained by considering only the values on W of components of B tangent to 

W. Thus B Iw is a differential form on W (of the same degree as B). The theory of the Thorn 

isomorphism and the Euler class, as described in [25], shows that any 6w with the properties 

stated in the last paragraph has the further property that 3w[w is in the cohomology class 

of X (N'), the Euler class of the normal bundle N'. If a connection A on N ~ is picked, so 

that X (N') is represented by a differential form X (F) (as defined above), then one can in a 

very natural way pick 6w such that 

~wlw = z(F) .  (5.9) 

Now it is clear why there is a restriction on the possible topology of the normal bundle 

to a five-brane. The "magnetic" field of the five-brane is supposed to be a three-form H 

obeying 

dH = 8w, (5.10) 

but this implies 

d(Hlw) = ~wlw = x (F) .  (5.11) 

Such an H can exist only if the differential form X (F) is trivial cohomologically, that is 

only if the characteristic class X (N t) vanishes. 

A form with the properties of 6w could be constructed using any connection A on N', but 

when W is embedded in M as a five-brane world-volume, there is a distinguished connection 

- coming from the Riemannian connection of M - and therefore a distinguished four-form 

X (F) representing the Euler class of the normal bundle. Eq. (5.10) is part of the naive idea 

of what a five-brane wrapped on W is supposed to be, but is not usually stated precisely 

enough to exhibit the "finite part" of the delta function along W that appears in (5.11). We 

will assume in the rest of this paper that (5.11) should be taken as part of the definition of 

a five-brane. 
Since the anomaly we are trying to eliminate is proportional to X (N~) 2, the vanishing of 

X (N') means that the integrated anomaly vanishes in a suitable sense. That is not enough; 

we need to cancel the anomaly locally, since gauge transformations are local. But vanishing 
of the integrated anomaly at least means that there is no topological obstruction to finding a 

counterterm that would cancel the anomaly. In fact it is easy to see, using (5.11), that there 

is such a counterterm. It is 

L = f HIw A t'2x (A), (5.12) 
. 2  

W 
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where again A is the Riemannian connection on N' and 12 x was introduced above. In- 
deed, using (5.8) and (5.11) and integrating by parts, the variation of AL under gauge 
transformations of N' is 

6a/, = - [  x ( F )  A X(~, F), (5.13) 
t t  

w 

and this is the six-form related by the usual "descent" procedure to the anomaly eight-form 
x(F)2/2 .  

So a multiple of L will cancel the X (N') 2 perturbative anomaly. Moreover, given the 
invariance of Type IIA superstrings under reversal of orientation of N'  together with sign 
change of H, this is the only anomaly that can be canceled by such a term. It is thus gratifying 
that precisely this term is the one whose contributions from previously known interactions 
do not cancel. 

5.5. B a c k  to M - t h e o r y  

For M-theory five-branes, we need a generalization of this, but how to do so is somewhat 
puzzling. The replacement of SO(4) by SO(5) and of x(N' )  a by px(N) makes even the 
absence of a topological obstruction to canceling the anomaly mysterious. For a specific 
five-brane world-volume W, p2(N) vanishes, as W is six-dimensional. But the topological 
interpretation of anomalies involves considering certain two-parameter families of physical 
objects [26], and one could perfectly well have a two-parameter family of W's with non-zero 

Pa (N) over the total space. It is not clear what sort of physical mechanism would suppress 
such families in M-theory. 

Beyond canceling the topological obstruction, we need to actually find a local counterterm 
that cancels the p2 (N) anomaly. The fact that this counterterm must reduce to (5.13) under 
the appropriate conditions makes it clear roughly what the desired counterterm must be, 
though the matter still seems rather obscure. For an SO(5) bundle N, the closest analog of 
the characteristic class X is a certain four-form with values in N, defined by 

F ab A FCdEabcd e 
Xe = 32Jr 2 (5.14) 

The factorization P2 = X 2 that holds for S O (4) bundles becomes for S O (5) bundles 

p2(N) = Z X e / ~  Xe- (5.15) 
e 

In M-theory, the fundamental differential form in space-time is not a three-form H but a 
four-form G. However, along W, one can define an N-valued three-form, namely the part 
of G with three indices tangent to W and one N-valued index. Let us write this part of G as 
He, where e is the N-valued index, and the indices tangent to W are not written explicitly. 
The analog of (5.12) must be something like 

f z He /~ "('2e ' (5.16) 
e W 



E. Witten/Journal of Geometry and Physics 22 (1997) 103-133 133 

where  aC2e is an N - v a l u e d  three- form related to Xe. He must  also obey an N-va lued  vers ion 

o f  (5.11). It is not  c lear  exact ly  what  the right equat ions  are. The  fact  that the story works  

so nicely  for  Type I IA  nevertheless  gives some faith that a satisfactory answer  must  exist  

in M-theory.  
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